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Project Description

A holistic, transparent life cycle assessment model of a variety of agueous mineral carbonation
processes was built using a hybrid process model and economic input-output life cycle assessment
approach (hybrid EIO-LCA). In this study we seek to evaluate the tradeoffs in using various reaction
enhancement process schemes while considering the larger life cycle impacts on energy use and
material consumption. While previous studies have identified process conditions optimal for enhancing
the chemical rates of reactions, no study has yet performed a scheme that optimizes these conditions
with respect to engineering and economic consideration for the goal of producing a viable carbonation
process. Results of this work will help to determine the mitigation potential of CO, mineralization.
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The LCA model allows for the evaluation of the
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* 8 generic process stages comprise the process-model Figure 1. Life cycle process model schematic for aqueous mineral carbonation of 1,000 t CO,, based on the Olivine
core of the LCA tool (Figure 1). — 155 °C case; line thickness is scaled to the energy and mass fluxes.

* The contribution to CO, emissions for select mineral
carbonation processes reveals that mixing, heating,
and grinding are the main energy drivers (Figure 2).

Outcomes and Applications

The life cycle assessment of aqueous mineral carbonation

Additionally, the geographic relationship between suggests that a variety of alkalinity sources and process
carbonation resources (i.e., industrial alkaline sources) configurations are capable of net CO, reductions.
and products (i.e., synthetic aggregate), CO, point-

sources, and aggregate markets has been investigated
(Figures 3, 4).
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Figure 2. CO, emissions per 1,000 t-CO,/d sequestered for the
carbonation processes with net CO, mitigation potential.
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